Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake
نویسندگان
چکیده
We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake-Catcher Network (QCN) that connects low-cost microelectromechanical systems accelerometers to a network of volunteer-owned, Internet-connected computers. Following the 3 September 2010M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground-motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real-time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakeswithin 9.1 s of the earthquake rupture and determines themagnitudewithin 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.
منابع مشابه
Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?
We have investigated the possible cause-and-effect relationship due to stress transfer between two earthquakes that occurred near Christchurch, New Zealand, in September 2010 and in February 2011. The Mw 7.1 Darfield (Canterbury) event took place along a previously unrecognized fault. The Mw 6.3 Christchurch earthquake, generated by a thrust fault, occurred approximately five months later, 6 km...
متن کاملDesigning a Volunteer Geographic Information-based service for rapid earth quake damages estimation
Designing a Volunteer Geographic Information-based service for rapid earth quake damages estimation Introduction The advent of Web 2.0 enables the users to interact and prepare free unlimited real time data. This advantage leads us to exploit Volunteer Geographic Information (VGI) for real time crisis management. Traditional estimation methods for earthquake damages are expensive and tim...
متن کاملSingle station estimation of earthquake early warning parameters by using amplitude envelope curve
In this study, new empirical relationships to estimate key parameters in Earthquake Early Warning (EEW) system including magnitude, epicentral distance and Peak Ground Acceleration (PGA) are introduced based on features of the initial portion of P-wave’s amplitude envelope curve. For this purpose, 226 time series recorded by bore-hole accelerometers of Japanese KiK-net are processed for earthq...
متن کاملThe Multi-Parameter Wireless Sensing System (MPwise): Its Description and Application to Earthquake Risk Mitigation
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a networ...
متن کاملHow Well Can We Extract the Permanent Displacement from Low-Cost MEMS Accelerometers?
Following the recent establishment of a high-density seismic network equipped with low-cost micro-electro-mechanical system (MEMS) P-wave-alert-device (P-Alert) by the earthquake early warning (EEW) research group at the National Taiwan University, a large quantity of strong-motion records from moderate-magnitude earthquakes (ML > 6) around Taiwan has been accumulated. Using a data preprocessin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014